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Introduction
Motivation:

• Real time photon counting optical ground receivers are needed to enable space to 
ground communications for both public and private applications. 

• Future NASA photon counting optical communications missions: LCRD, O2O, Psyche

Strategy: 

1. Develop an optical communications photon counting test bed to enable development of 
a real time optical receiver which includes the following subsystems:
• Aft optics (photonic lantern), single photon counting detectors, and real time FPGA-based receiver.

2. Model key optical communications 
system parameters to understand impact 
on system performance

Objective: 

• Utilize system test bed and model to 
predict system performance
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Optical Communications System Test Bed
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Optical Transmitter – Software Defined Radio

• Based on Harris 
Corporation 
Reconfigurable Space 
processor development 
card

• A custom optical 
mezzanine card performs 
serialization of electrical 
signal generated on FPGA

• Xilinx Virtex 7 FPGA 
houses the optical 
transmit waveform
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Optical Transmitter –Waveform

• Implements the full CCSDS 
Optical Communications 
Coding and Synchronization 
Red Book telemetry link

• Testing performed with the 
following waveform: 
• PPM-32

• Code rate 1/3

• Slot width 1 ns

• Guard band: 8 slots (25%)

• Data rate 40 Mbps

• Note: channel interleaver
bypassed for testing purposes
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Optical Transmitter – Electro-optic Modulator System1

• Consists of two high 
extinction ratio electro-optic 
modulators cascaded in series

• Electrical signal driving 
modulators is offset in time to 
narrow the optical pulse 
position modulation signal, 
improving the extinction ratio

1.  Lantz, N., Nappier, J., Vyhnalek, B. and Tedder, S.  
“Optical software defined radio transmitter extinction ratio 
enhancement with differential pulse carving,” Proc. SPIE 
Free-Space Laser Communication and Atmospheric 
Propagation XXXI 10910 (62) 2019.
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Link Emulation

• Free space loss is 
emulated with a 
variable attenuator

• No additional noise 
inserted
• Kb ≈ 0.0001 background 

photons/slot

• Power meter used to 
measure optical power 
into the receiver
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Optical Receiver – Single Photon Counting Detectors2

Description:
• Contains two single mode fiber 

coupled detectors from the Quantum 
Opus, Opus One™ system

Characterization Results:
• Detector pulse rise time

• 850 ps

• Detector reset time
• 18-20 ps

• Maximum detection efficiency 
(polarization dependent)
• 80% at maximum point
• 50-60% at operating point due to detector 

blocking losses (1.5 dB blocking loss)

• Detector jitter full width half max:
• Channel 1: 68 ps
• Channel 2: 85 ps

2.  Vyhnalek, B., Tedder, S., and Nappier, J.  “Few-mode fiber 
coupled superconducting nanowire single-photon detectors 
for photon efficient optical communications,” Proc. SPIE 
Free-Space Laser Communication and Atmospheric 
Propagation XXXI 10910 (11) (2019).
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Optical Receiver – Waveform

• Detector pulses are sampled 
at 2 GHz with an oscilloscope 
and post-processed using a 
Matlab receiver model

• SCPPM decoder performs 
iterative decoding using the 
BCJR algorithm

• Sample jitter introduced by 2 
GHz sampling of 850 ps
detector pulse is ~45 ps RMS

• Calculated total receiver jitter:
• Channel 1: 61 ps RMS

• Channel 2: 68 ps RMS
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System Simulations

Description:

• Matlab model of the CCSDS Optical Communications Coding and 
Synchronization telemetry link (downlink)
• Transmit waveform

• Floating point receive waveform has iterative decoding using the BCJR algorithm

• Simulations modeled key system parameters including:
• Number of detectors

• Detector blocking

• Jitter

• Background noise photons/slot (Kb)

• Signal photons/signal slot (Ks)

• Performance metrics:
• Bit error rate curves generated for fixed background noise



11
SPIE Photonics West 2019www.nasa.gov

System Simulation Results – Capacity and Baseline

• PPM-32

• Code rate 1/3 

• Kb = 0.0001 
background 
photons/slot

Capacity curve 
generate 
through a 
Monte Carlo 
method

Ideal number of 
detectors 
modeled as a 
Poisson process
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System Simulation Results – 1 Detector

• PPM-32

• Code rate 1/3 

• Kb = 0.0001 
background 
photons/slot

Due to very low 
background noise 
and use of a single 
detector, curve 
shifts to left

Receiver 
limited to 1 
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System Simulation Results – 1 Detector + 20 ns Blocking
• PPM-32

• Code rate 1/3

• 1 ns slot width

• Guard band: 8 slots 
(25%)

• 40 Mbps data rate

• Kb = 0.0001 
background 
photons/slot

Receiver 
limited to 1 
detector + 20 
ns blocking 
(light blue)

No significant change in 
performance compared 
to no blocking due to 
pulse repetition rate of 
waveform selected
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System Simulation Results – Detector Jitter
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Test bed System Testing Results – Channel 1
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Test bed System Testing Results – Channel 2

• PPM-32

• Code rate 1/3

• 1 ns slot width

• Guard band: 8 slots 
(25%)

• 40 Mbps data rate

• Kb ≈ 0.0001 
background 
photons/slot

System test from 
channel 2 (blue)

Channel 2 (68 ps
RMS jitter) matches 
simulation of 80 ps
RMS jitter
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Summary

• A photon counting optical communications system test bed was 
designed and characterized

• Key parameters of the system were modeled in simulation including:
• Detector blocking

• Detector jitter

• Detector pulse rise time

• Background noise

• BER curve results from the system test bed align with simulation 
results
→ Sources of loss in the system have been accurately characterized

→ Model can be used to predict performance of other waveforms
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